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Abstract

Subject motion degrades the quality of task functional magnetic resonance imaging (fMRI) data. 

Here, we test two classes of methods to counteract the effects of motion in task fMRI data: (1) a 

variety of motion regressions and (2) motion censoring (“motion scrubbing”). In motion 

regression, various regressors based on realignment estimates were included as nuisance 

regressors in general linear model (GLM) estimation. In motion censoring, volumes in which head 

motion exceeded a threshold were withheld from GLM estimation. The effects of each method 

were explored in several task fMRI data sets and compared using indicators of data quality and 

signal-to-noise ratio. Motion censoring decreased variance in parameter estimates within- and 

across-subjects, reduced residual error in GLM estimation, and increased the magnitude of 

statistical effects. Motion censoring performed better than all forms of motion regression and also 

performed well across a variety of parameter spaces, in GLMs with assumed or unassumed 

response shapes. We conclude that motion censoring improves the quality of task fMRI data and 

can be a valuable processing step in studies involving populations with even mild amounts of head 

movement.
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Introduction

Head motion is problematic in functional magnetic resonance imaging (fMRI) studies 

[Barch et al., 1999; Birn et al., 1998, 1999, 2004; Friston et al., 1996; Gopinath et al., 2009; 

Hutton et al., 2002; Jiang et al., 1995; Johnstone et al., 2006; Lemieux et al., 2007; Oakes et 

al., 2005; Wu et al., 1997; Yetkin et al., 1996]. Blood–oxygen-level-dependent (BOLD) 

signal acquisition depends on precise spatial and temporal placement of magnetic gradients 

on scales of millimeters and milliseconds. Head motion during scans causes image intensity 

to reflect not only blood oxygenation but also frank motion-related artifact. The more a data 

set is contaminated with such motion-related signal changes, the more difficult it becomes to 

detect neurophysiological events of interest. For investigators of subject populations that 

tend to move, methods to recover relatively high-quality data and results from relatively 

low-quality scans are of clear importance.

In task fMRI, head motion is often dealt with, first by mandatory data realignment and then 

by optional, additional measures to counter motion-related effects. It is a common practice 

to align the data throughout a scan by estimating the position of the head in space at each 

volume, followed by realignment using rigid body transforms. In such transforms, head 

position at each time point is described with six parameters: translational displacements 

along the X-, Y-, and Z-axes, and rotational displacements of pitch, yaw, and roll. 

Realignment is an essential part of data processing, but it cannot correct the signal 

alterations or image distortions that occur as a result of movement.

Further optional steps can be taken to counter movement-related disruption of BOLD signal 

in task fMRI [Birn et al., 2004]. Investigators have demonstrated the utility of a variety of 

methods, including interpolation over motion-corrupted voxels [Huang et al., 2008], 

weighting images by the inverse of their variance [Diedrichsen and Shadmehr, 2005], 

ignoring volumes containing stimulus-correlated motion [Birn et al., 2004], ignoring 

volumes during gross movement [Lemieux et al., 2007], monitoring and modeling 

physiologic and motion-related noise [Jones et al., 2008], and including motion-related 

nuisance regressors in general linear model (GLM) estimation [Friston et al., 1996]. Motion 

regression is perhaps the most widely used among these methods, and regressors have been 

shown to improve the reliability of GLM analyses in many cases [Lund et al., 2005; Morgan 

et al., 2007; Oakes et al., 2005].

GLM estimation in the presence of motion, or attempts to counter motion, is, however, not a 

simple matter. Movement-related signal changes tend to degrade the fit of parameter 

estimates to the data in a GLM, increasing the error term and reducing statistical 

significance. Additionally, movement that is correlated with tasks can produce spurious 

task-related activity [Bullmore et al., 1999; Field et al., 2000; Hajnal et al., 1994]. Motion 

regression is aimed at compensating for some of these effects, but motion regression cannot 

correct motion-induced signal drop-out or image distortion. Additionally, in instances where 
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subject motion is not independent of task timing, motion regression can cause 

underestimation of true experimental effects [Bullmore et al., 1999; Johnstone et al., 2006]. 

Such considerations introduce uncertainty to the meaning of results in the presence of 

motion or attempts to counter motion.

Here, we evaluate an approach that mitigates effects of head motion in task fMRI analysis 

while avoiding some of the aforementioned ambiguities. We previously observed large-

amplitude signal changes limited to the periods of subject movement in task-free resting-

state functional connectivity (RSFC) MRI. These observations can be made even after 

motion regression is performed, indicating that at least some common regressions do not 

adequately remove motion-related changes in BOLD signal [Power et al., 2012]. 

Accordingly, we developed a “scrubbing” method to identify and remove completely high-

motion data from our analyses (by censoring volumes using temporal masks). This 

procedure revealed clear and powerful effects of motion in our RSFC analyses despite 

having prepared our data with standard motion regressions [Power et al., 2012].

Here, we modify our “scrubbing” procedure, referred to here as motion censoring or simply 

censoring, to evaluate whether applying temporal masks to remove high-motion volumes 

can improve results in task fMRI. Similar censoring approaches have been used in task 

fMRI previously [Kennedy and Courchesne, 2008; Kirwan et al., 2009; Stark et al., 2010] 

and in RSFC [Lemieux et al., 2007] and are implemented in software packages such as 

AFNI. However, to our knowledge, the statistical benefit of these approaches has not been 

evaluated. We demonstrate the benefit of this motion censoring approach in three data sets, 

showing that censoring generally decreases variance across subjects in parameter estimates 

(i.e., time courses, or Level I analyses) and increases statistical power in ANOVAs and t-

tests (Level II analyses). We propose methods to select unbiased regions of interest (ROIs) 

to test the effects of censoring in data sets, and we demonstrate how censoring parameters 

can be explored to yield increases in statistical power. We find that more stringent censoring 

criteria (removing more motion-contaminated data) produce increased statistical benefits up 

to some point, beyond which the cost of removing additional data points outweighs the 

benefit of censoring. We explore an additional parameter space associated with choosing 

volumes to censor (e.g., censoring additional volumes before and after periods of motion) 

and find little difference between choices. We demonstrate these benefits when the data are 

modeled without assumed response shapes and also with assumed response shapes. Finally, 

we demonstrate that motion censoring outperforms several varieties of motion regression in 

task fMRI.

Methods

Subjects

Subjects were recruited from the Washington University in St. Louis campus and the 

surrounding community. The subjects were recruited for three separate studies, and are 

referred to as Cohorts 1, 2, and 3. For all three cohorts, individuals with metal implants, 

heart arrhythmias, claustrophobia, or a reported history of developmental delay were 

excluded. Individuals in Cohorts 1 and 3 reported no history of neurologic and psychiatric 

diagnoses and did not use psychotropic medications. Individuals in Cohort 2 were recruited 
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as part of a study of Tourette Syndrome and were not excluded on the basis of any 

psychiatric diagnosis commonly comorbid with Tourette syndrome including attention-

deficit/hyperactivity disorder and obsessive compulsive disorder, nor were they excluded for 

taking psychotropic medications. All subjects were native English speakers. All minors were 

brought in for a visit prior to scanning for the consenting process, an introduction to the 

scanning environment via a mock scanner, and neuropsychological testing. For all minor 

subjects, verbal assent and parental informed consent to the testing and scanning was 

acquired in accordance with the guidelines and approval of the Washington University 

Human Studies Committee. All adult subjects gave informed consent prior to scanning in 

accordance with the guidelines and approval of the Washington University Human Studies 

Committee. Subjects were compensated for their participation. All aspects of the studies 

were approved by the Institutional Review Board at Washington University School of 

Medicine.

Behavioral Paradigms and Data Collection

This study utilized three event-related task fMRI cohorts representing children, adolescents, 

and adults (Table I). We use these data not to focus on particular ages or patterns of activity, 

but to show across studies, conditions, and contrasts, the impact of various motion 

correction strategies.

For all cohorts, data were acquired on a Siemens MAGNETOM Tim Trio 3.0T Scanner with 

a Siemens 12-channel Head Matrix Coil (Erlangen, Germany). A thermoplastic mask was 

individually fitted to each subject's head to limit head motion during data acquisition. A T1-

weighted sagittal MP-RAGE structural image was obtained (echo time [TE] = 3.06 ms, 

repetition time [TR]-partition = 2.4 s, TI = 1,000 ms, flip angle = 8°, 176 slices with 1 × 1 × 

1 mm voxels). A T2-weighted turbo spin-echo structural image (TE = 84 ms, TR = 6.8 s, 32 

slices with 2 × 1 × 4 mm voxels) in the same anatomical plane as the BOLD images was 

also obtained to improve alignment to an atlas.

Cohort 1 consisted of 53 children of ages 7–8 years. Subjects in this cohort performed a 

string-matching task on two simultaneously presented strings of letters or letter-like forms. 

Five categories or strings (words, pseudowords, nonwords, consonant strings, and Amharic 

characters) were separated by run. Subjects were asked to make a visual matching decision 

via button press. Trials were arranged for analysis in a rapid event-related design. Intertrial 

intervals were randomly distributed between 1, 2, and 3 TRs. Functional images were 

obtained using a BOLD-contrast sensitive gradient-echo echo-planar sequence (TE = 27 ms, 

flip angle = 90°, in-plane resolution = 4 × 4 mm, 32 contiguous interleaved 4 mm axial 

slices, volume TR = 2.5 s). Five task runs each lasting 133 volumes (332.5 s) were obtained 

in each subject. In total, 15 conditions were modeled, each lasting seven time points (TRs). 

Subjects with <60% accuracy on the task, root-mean-square realignment estimates (RMS 

movement) exceeding 1.5 mm for the entire session, or the presence of any GLM variables 

with less than two data points contributing to its estimation following the framewise 

displacement (FD) = 0.9 motion censoring (described below) were excluded. In all, 20 out of 

53 subjects remained after exclusion criteria were applied.
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Cohort 2 consisted of 73 children and adolescents (9–15 years) with Tourette syndrome. 

Subjects in this cohort performed a cue-switching task drawing attention to either the color 

or the identity of cartoon characters. Cues (a single word presented in all capital letters) 

were presented for one TR, and Targets (a colorful cartoon character) were presented in the 

subsequent TR, with approximately 20% of trials having only a cue and not a target 

stimulus. Target judgments were made via button press. Trials were arranged for analysis in 

a rapid event-related design with complex trials (including separable cue and target trials). 

Intertrial intervals were randomly distributed between 1, 2, and 3 TRs. Functional images 

were obtained using a BOLD-contrast sensitive gradient-echo echo-planar sequence (TE = 

27 ms, flip angle = 90°, in-plane resolution = 4 × 4 mm, 32 contiguous interleaved 4 mm 

axial slices, volume TR = 2.0 s). Three to six task runs each lasting 144 volumes (288 s) 

were obtained in each subject. Four cue conditions and eight target conditions were 

modeled, each lasting nine time points (TRs). Subjects with <70% accuracy on the task or 

fewer than three task runs with RMS movement below 1.5 mm were excluded. In brief, 38 

out of 73 subjects remained after exclusion criteria were applied.

Cohort 3 consisted of 35 adults of ages 21–30 years. Subjects in this cohort performed a 

visual attention (modified Posner) task. Target detection judgments were made via button 

press. Trials were arranged for analysis in a mixed block/event-related design with complex 

trials (cue and target). Intertrial intervals were randomly distributed between 1, 2, and 3 

frames. Functional images were obtained using a BOLD-contrast sensitive gradient-echo 

echo-planar sequence (TE = 27 ms, flip angle = 90°, in-plane resolution = 4 × 4 mm, 32 

contiguous interleaved 4 mm axial slices, volume TR = 2.5 s). Six to eight task runs each 

lasting 217 volumes (542.5 s) were obtained in each subject. Two cue conditions and 10 

target conditions were modeled, each lasting seven time points (TRs). Subjects with <85% 

accuracy on the task, or fewer than four runs with RMS movement below 1.0 mm were 

excluded. In total, 30 out of 35 subjects remained after exclusion criteria were applied.

Head Realignment Estimate Calculations

Head motion estimation involved a series of rigid body transforms, Ti, where i indexes 

frame (volume) and Ti spatially registers volume i to a selected reference frame. Each 

transform was computed by minimizing the registration error ∊i = 〈(sIi(T(x⃗))−Io(x⃗))2〉, where 

I(x⃗) is image intensity at locus x⃗, angle brackets denote the spatial average over the brain, 

subscript 0 denotes the reference frame (here, taken as the run midpoint) and s is a scalar 

factor that compensates for small changes in mean signal intensity. Each transform can be 

expressed as a combination of rotation and displacement components. Thus,

where Ri is a 3 × 3 rotation matrix and di is a 3 × 1 column vector of displacements. Ri can 

be factored into three elementary rotations about each of the three axes. Thus, Ri = 

RiαRiβRiγ, where
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Thus, each rigid body transform is defined by six parameters.

FD Calculations

Differentiating head realignment parameters over time yields a six-dimensional time series 

that represents instantaneous head motion. To express instantaneous head motion as a scalar 

quantity, we used the empirical formula for FD, FDi = |Δdix| + |Δdiy| + |Δdiz| + |Δαi| + |Δβi| + 

|Δγi|, where Δdix = d(i − 1)x − dix, and similarly for the other rigid body parameters [dix, diy, 

diz, αi, βi, γi]. FD0 is set to zero. Rotational displacements were converted from radians to 

millimeters by calculating displacement on the surface of a sphere of radius 50 mm, which is 

approximately the mean distance from the cerebral cortex to the center of the head. This 

calculation is identical to that used in Power et al. [2012] for “scrubbing” RSFC-MRI data.

fMRI Preprocessing

Functional images were first processed to reduce artifacts [Miezin et al., 2000]. These steps 

included: (i) correction of odd versus even slice intensity differences attributable to 

interleaved acquisition without gaps, (ii) correction for head movement within- and across-

runs, and (iii) within-run intensity normalization to a whole-brain mode value (across TRs 

and voxels) of 1,000.

Atlas transformation of the functional data was computed for each individual via the MP-

RAGE scan. For Cohorts 1 and 2, the transformation was done by using an atlas-

representative target composed of a mutually coregistered independent sample of 12 healthy 

adults and 12 healthy 7- to 8-year-old children, which was made to conform to the Talairach 

atlas using a spatial normalization method [Lancaster et al., 1995]. For Cohort 3, an atlas 

based on 12 healthy adults was used. Each run was then resampled in atlas space on an 

isotropic 3-mm grid combining movement correction and atlas transformation in a single 

interpolation. Data were resampled into 3-mm isotropic voxels for Cohorts 1 and 3 and into 

2-mm isotropic voxels for Cohort 2. This discrepancy in voxel sizes arose incidentally but 

serves to demonstrate the generalizability of results beyond a single voxel size. The atlas-

transformed image for each participant was checked against a reference average to ensure 

appropriate registration.

RMS movement was calculated from realignment parameters (rotational estimates converted 

to translational at radius of 50 mm). As previously mentioned, subjects were excluded from 

each study on the basis of study-specific RMS movement thresholds. This study thus 

documents the improvements that can be seen within “acceptable” subject populations. 

Excluded subjects are not reported in this study or in Table I.
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Standard Processing/Uncensored Data

Some data were analyzed at this point with no further efforts to counter motion effects. Such 

data are said to have undergone Standard Processing and are referred to as “uncensored” 

data.

Motion Censoring

The motion censoring procedure entailed the following steps. (i) FD was calculated as 

mentioned above. (ii) All volumes whose FD exceeded a particular threshold were flagged 

to form a temporal mask (Table I and Fig. 1). (iii) An optional step of temporal mask 

augmentation flagged additional volumes preceding and/or following flagged volumes. (iv) 

The GLM ignored all flagged volumes during parameter estimation (equivalent to adding 

single-TR regressors at censored volumes). Data that underwent this process are called 

“censored” data.

Thresholds—The goal of this report is to document and explore the benefits of motion 

censoring in a task fMRI context. Accordingly, thresholds were chosen to remove modest 

portions of motion-contaminated data, not to remove all volumes with motion. A threshold 

of FD > 0.90 mm is often used in this report (Figs. 1–3) though other thresholds are 

examined (Fig. 6).

Augmentation—The uncertainty of the precise timing of movement and the need to re-

establish spin histories suggests that it may also be appropriate to flag volumes 1 back and at 

least 1 forward of any motion-flagged volume. Most figures display censoring using no 

augmentation. If augmentation is performed, “fX” is used to indicate temporal mask 

augmentation after flagged volumes, and “bX” indicates augmentation prior to flagged 

volumes (e.g., f0, b0 means forward zero, backward zero, i.e., no augmentation). For Figure 

6, thresholds and augmentations were chosen to remove nearly identical amounts of data 

(i.e., relaxed thresholds with augmentation vs. stringent thresholds with no augmentation, 

each removing similar amounts of data). “Random censoring” was accomplished by 

examining a subject's temporal mask (in Fig. 6, FD > 0.9 mm, f0, b0) and removing 

identical amounts of data (with identical distribution of temporal lengths) from the subject 

but at random, not targeting periods of motion.

The motion censoring procedure used here differs from that described in Power et al. [2012] 

in one major respect, which is that the DVARS measure is not used to censor data. DVARS 

measures the change in signal across all voxels in the brain from volume to volume. As the 

nature of task fMRI is to evoke BOLD signal changes at particular time points, the use of 

such a measure would tend to target not only periods of movement but also task-related 

activity. The measure is therefore not used in this article.

Motion Regressions

To test motion regression as a means of countering movement-related effects, motion 

parameters were included as regressors of no interest in the calculation of the GLM. Five 

different combinations of motion regressors were tested:
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1. FDt: FD (1 regressor).

2. Rt: detrended rigid body realignment parameters (6 regressors).

3. Rt′: temporal derivatives of R (6 regressors).

4. Rt and Rt′ (12 regressors).

5. Vt, Vt
2, Vt − 1, Vt − 1

2: where Vs are the realignment parameters (24 regressors). This 

is the Volterra expansion proposed in Friston et al., 1996. Values of 0 are used for 

Vt ‒ 1 at a time point 0.

GLM Estimation

As individual volumes are being withheld from the data, it is worth defining all terms used 

to refer to the data. A single volume of data may be referred to as a frame (as in a movie) or 

as a TR of data. When a condition is modeled, the number of times the condition occurs is 

the number of events contributing to the condition. Each event lasts the number of modeled 

TRs. Thus, a single volume, if it contributes to the modeling of several conditions owing to a 

rapid event-related design, may represent multiple events. If such a volume was censored, 

each condition to which it contributed would have one less event at the time point 

represented by that volume.

Statistical analyses of event-related fMRI data were based on the GLM as described 

previously [Brown et al., 2005; Miezin et al., 2000; Schlaggar et al., 2002] using in-house 

software programmed in the Interactive Data Language (ITT Visual Information Solutions, 

Boulder, CO) and C [Miezin et al., 2000; Ollinger et al., 2001]. Temporal masks (censoring) 

and motion regressors were incorporated into model estimation where indicated. GLM terms 

included linear drift terms, baseline terms, and terms associated with each modeled 

condition. Unless specified, no assumptions were made regarding the shape of the 

hemodynamic response function (time course), only the durations were constrained for each 

condition (seven to nine time points depending on TR; ∼18 s). This approach is similar to 

the FIR approaches available in packages such as FSL or SPM. ANOVA over time was used 

to assess significance of time series generated with unassumed response shapes. Some linear 

models were also calculated using a double gamma function as the assumed shape of the 

hemodynamic response. In this instance, t-tests of betas were used to assess significance of 

activation.

Typically, parameter estimates (time courses) for several conditions are modeled in a study 

(e.g., for Words, Nonwords, Pseudowords, Errors, etc., in Cohort 1). Most conditions are 

modeled over seven TRs (17.5 s in Cohort 1) and hence time courses will have seven time 

points. Motion censoring can result in a variable number of events (contributing volumes) at 

different time points in a condition. For example, prior to censoring, a subject may have 12 

events in a condition, but if suprathreshold motion occurred during TRs 1–3 of one event in 

the condition, time points 1–3 would have one fewer event than time points 4–7 of the 

condition. Subjects for whom less than two events (two data points contributing to an 

estimate) remained for any time point in any condition following application of a temporal 

mask were excluded from further analysis (two subjects in Cohort 1, not included in Table I 

or any further analyses).
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ROI Selection

Two methods for ROI definition are used in this article. In all cases, a peak detection 

algorithm was used to identify up to 50 ROIs from peaks of statistical images with z > 3.5 at 

a spacing of at least 10 mm. ROIs were modeled as 10-mm diameter spheres. Four ROIs that 

were clearly in white matter or ventricles were excluded in Cohort 2. Statistical images were 

generated from ANOVAs operating on time courses, and reported z-scores are the average 

values found within an ROI.

“Uncensored” ROIs were defined based on ANOVAs operating in uncensored (standard 

processed) data. These ROIs provided baseline z-scores to compare with the z-scores arising 

under various processing strategies.

“Mean map” ROIs were defined by separately running ANOVAs on censored and 

uncensored data and creating an averaged statistical map for a given effect or contrast. Peaks 

on the averaged map defined ROIs, providing an unbiased ROI set with which to compare 

censoring and standard processing. Hence, as long as the results are not known beforehand, 

this is an unbiased way of selecting ROIs to compare two methodologies. When this 

methodology was selected, we did not know the results. As it will be seen, censoring 

produces higher z-scores, in general, meaning that these ROIs are biased toward censored 

peaks. However, the same results are seen if “Uncensored” ROIs are used (Fig. 6), rendering 

discussion of such biases moot. Another possible way to select unbiased ROIs is to use 

conjunctions of the peak ROIs found from two methodologies.

Residual Signal Comparison

In Cohort 1, the uncensored ROIs were used to compare GLM residual signal between 

uncensored, censored, and randomly censored data. For a given ROI within a given subject, 

at each time point, residuals at each time point were calculated as the average residual across 

all voxels within the ROI. RMS values over time were then calculated for each ROI within 

each subject. Figure 4 shows these RMS values.

Analysis of Within-Subject Variance in Cohort 1

As described above, each subject in Cohort 1 completed five task runs. To obtain a measure 

of within-subject variance in parameter estimates for each individual subject, a separate 

linear model was computed for each individual task run to generate time courses. The 

following analysis focused on the time course generated for all correct trials across 

conditions in each run of each subject (the “All Conditions” of Fig. 4). For each subject, the 

variance of the five estimates was computed at each of seven time points for each of the 50 

“mean map” ROIs, before and after censoring. Total variance across time points and ROIs 

within each subject was compared in censored versus uncensored data using a one-tailed 

paired t-test (Supporting Information Fig. S1)

Results

Three independent task fMRI studies are examined in this report. The studies varied by task, 

subject's age, clinical status, exclusion criteria, and average head motion estimates. Younger 
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subjects exhibited greater amounts of movement (Table I). A variety of analyses are 

presented for the study involving children (Cohort 1). The studies involving adolescents and 

adults (Cohorts 2 and 3) are presented toward the end of the report as further demonstrations 

of the benefits of motion censoring.

An Overview of How Motion Censoring Impacts Subjects in Cohort 1

Figures 1 and 2 show an overview of how one typical version of motion censoring impacted 

Cohort 1. This version of censoring is used throughout this report unless otherwise 

indicated. Figure 1 shows the FDs for two children (one still subject, one subject with 

intermittent movements) and how temporal masks are formed (gray volumes are ignored). 

For Cohort 1, a temporal mask defined by a FD > 0.9 mm with no augmentation (f0, b0) was 

chosen as a default setting for data censoring (Fig. 1). These temporal masks were chosen to 

remove a modest amount of high-motion data for proof-of-principle purposes. They are not 

designed to identify all time points when subjects moved but rather only periods of large 

movement.

Figure 2 shows how the resulting temporal masks impacted the design matrices of individual 

subjects and Cohort 1, in general. At left in Figure 2, the number of retained (black) and 

ignored (gray) events at each time point (fine bars) of each condition (big bars) modeled by 

the GLM is shown for a single subject. This subject was typical of the cohort in terms of 

motion; with an RMS movement of 0.72 mm. Censoring removed 16 ± 11% of the data 

across subjects (range, 1–36%). The middle panel of Figure 2 shows the percentage of 

events removed from each condition across subjects (collapsed across time points within the 

condition). A two-way ANOVA (condition and time point) found no effect of time point or 

condition on percent of events removed in the cohort, meaning that motion was just as likely 

in all conditions, and at all time points in conditions.

One possible method of motion correction is to interpolate signal during instances of motion 

using data before and after movement [Huang et al., 2008]. The temporal masks generated 

by censoring indicate that this approach may not be practical for many instances of motion. 

The right panel of Figure 2 is a histogram of the number of temporally contiguous volumes 

excluded by the temporal masks across Cohort 1 (i.e., the sizes of the gray portions of the 

temporal masks in Fig. 1). Although many instances of motion are brief (1 volume), many 

are also extended. Of the 865 instances of motion identified across this cohort, 250 (29%) 

lasted three or more time points. Although gaps of one or two TRs can be interpolated 

meaningfully, interpolation over gaps of many TRs seems unlikely to reflect an underlying 

signal with much fidelity.

First-Level Analysis: Motion Censoring Reduces Variance in Parameter Estimates

GLMs were estimated in uncensored and censored versions of Cohort 1's data using the FD 

> 0.90 f0, b0 settings described above. Figures 3–5 show the impact of censoring on Level I 

(time course estimation and GLM fit) and Level II (statistical map) analyses. To compare 

parameter estimates before and after censoring, uncensored and censored statistical maps 

were averaged and peaks in this averaged map were selected as “mean map” ROIs to 

compare uncensored versus censored results (METHODS). Figure 3 shows representative 
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time courses from mean map ROIs that showed effects over all correct conditions, and in a 

single condition (Pseudowords). Seven time points (17.5 s) are modeled for all conditions in 

these GLMs, and no assumptions are made about the shape of the hemo-dynamic response. 

Uncensored time courses are shown with dotted lines, and censored time courses are shown 

with solid lines. Time courses are relatively unchanged in shape and magnitude. However, 

the between-subject variance in parameter estimates generally decreases, suggesting that 

second-level analyses ought to gain statistical power.

An important question is whether within-subject variance in parameter estimates is reduced, 

in addition to between-subject variance. Answering this question is not straightforward in 

Cohort 1 because this data set is a rapid event-related design, not a widely spaced design, 

and hence the shape of each trial time course cannot be estimated individually. However, by 

splitting the data set into five parts (runs), for each subject, and obtaining parameter 

estimates within each subset under uncensored and censored processing, we were able to 

compare within-subject variance in parameter estimates before and after censoring. This 

comparison, shown in Supporting Information Figure S1, demonstrated a 14.2% reduction 

of within-subject variance in parameter estimates (t[19] = 2.018, P = 0.029).

First-Level Analysis: Motion Censoring Reduces the Error Term in GLM Estimation

Adding noise to data should reduce the fit of signal to parameters within GLMs, thereby 

increasing the signal left in the residual (error term). If censoring removes noise from the 

data, it should improve the fit of signal to parameters and reduce the residual signal. Results 

thus far indicate that censoring produces more uniform parameter estimates across subjects, 

consistent with the first prediction. To assess the second prediction, uncensored ROIs that 

were active across all correct conditions were identified, and the RMS residuals of those 

ROIs (across all time points) were computed for uncensored and censored GLMs, as well as 

for GLMs calculated using random censoring. Figure 4 shows the RMS values of these 

residuals for all subjects. The error term is uniformly decreased by the censoring procedure 

but unchanged by the random censoring procedure (Supporting Information Fig. S2), 

consistent with the removal of noise from data.

Second-Level Analysis: Motion Censoring Increases Statistical Effects

We next examined how censoring affects statistical power. ANOVAs were performed on 

uncensored and censored data to identify voxels with significant time courses across all 

conditions (a main effect of time), a single Pseudoword condition, and in a within-subject 

contrast of error versus correct responses. Statistical maps (z-scores from ANOVA over 

time) from these analyses are shown in Figure 5. Censoring produced clear increases in z-

scores in each analysis. A modest threshold has been applied to the images to ease 

visualization. To quantify the statistical improvements produced by censoring, the z-scores 

of mean map ROIs before and after censoring were compared. In all cases, z-scores were 

significantly increased by censoring: all conditions (Δz = 0.79, t[47] = 8.66], P = 2.7E – 11), 

single condition (Δz = 0.59, t[45] = 5.69, P = 9.2E – 7), within-subject contrast of error 

versus correct trials (Δz = 0.78, t[33] = 7.31, P = 2.18E – 8).
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As mentioned previously, motion artifacts are known to cause greater spurious activation in 

particular locations of the brain. One such location is the frontal pole [Oakes et al., 2005; 

Wu et al., 1997]. In the single condition (Figure 5, middle), the uncensored slice at z = 20 

displays a narrow strip of activation around the anterior cortical surface. This activation at 

the frontal pole is reduced upon censoring, consistent with a reduction in spurious activation 

produced by motion artifact.

Exploring the Parameter Space of Temporal Mask Generation

The censoring settings used thus far were chosen to demonstrate the effects of removing a 

modest amount of motion-contaminated data. To explore how sensitive the censoring 

procedure is to choices of threshold and augmentation, other settings were tested using 

uncensored ROIs derived from an uncensored main effect of time ANOVA operating on all 

correct conditions.

Motion censoring was performed with a range of FD thresholds, from a lenient threshold of 

1.3 mm down to a strict threshold of 0.3 mm (for reference, FD values in very still subjects 

range from 0 to 0.2 mm). At the threshold of FD > 0.3 mm censoring reduced qualifying 

data to one or zero events for particular time points in particular events and z-scores 

decreased dramatically because too much data were discarded (data not shown). Figure 6 

shows the results of the FD > 0.5–1.3 mm analyses. Censoring increased z-scores at all 

thresholds examined, and the greatest increase was seen at FD > 0.9 mm.

Various augmentations of the temporal mask were also tested. As spin histories are 

disrupted for many seconds by head motion [Friston et al., 1996], removing additional 

volumes after head movement may further improve data quality. Additionally, as 

realignment estimates integrate information from a full volume acquisition, it is uncertain 

exactly when movement occurred, and it may be advantageous to remove the volume 

immediately preceding motion. With these two considerations in mind, five censoring 

settings that removed equivalent amounts of data in different ways were tested: (1) FD > 0.9 

mm only (f0, b0), (2) FD > 1.1 mm and 1 frame after flagged volumes (f1, b0), (3) FD > 1.1 

mm and 1 volume before flagged volumes (f0, b1), (4) FD > 1.3 mm and 1 volume before 

and after flagged volumes (f1, b1), and (5) volumes removed at random in identically sized 

portions of data as the FD > 0.9 (f0, b0) temporal mask within each subject. As shown in 

Figure 6, all four censoring settings caused z-scores to increase, and the random censoring 

caused z-scores to drop, as expected. In a one-factor ANOVA, the FD > 0.9, (f0, b0) mask 

produced significantly higher z-scores than all of the other masks except FD > 1.1 mm 

(f0,b1) which was not significantly different. On the basis of these results, we do not 

recommend removing volumes proceeding or following high-motion volumes, and we do 

not do so in the other data sets used in this article.

Motion Censoring Outperforms Several Motion Regressions

Motion censoring was compared to a variety of motion regression techniques. Five GLMs 

were created, each incorporating a different combination of motion estimates as nuisance 

regressors: (1) the single measure of FD, (2) the six detrended rigid body realignment 

parameters, (3) the temporal derivatives of the six detrended rigid body realignment 
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parameters, (4) a combination of the detrended realignment parameters and their derivatives 

(12 regressors), and (5) a 24-parameter Volterra expansion of the realignment parameters for 

each time point and the previous time point [Friston et al., 1996]. As shown in Figure 6, two 

of the regressions (derivatives of detrended realignment parameters and the 24-parameter 

expansion) increased z-scores, but the other regressions decreased z-scores.

Motion censoring generally outperformed motion regressions. Censoring at FD > 0.9 mm 

performed significantly better than the best regression (t[49] = 4.51, P = 0.0073). To see 

whether a combination of censoring and regression might most benefit the data, a GLM was 

created using the default censoring settings and regressions of the derivatives of realignment 

estimates. The changes in z-score produced by this GLM were not significantly different 

from censoring alone (t[49] = 7.50, P = 0.34).

Motion Censoring is Beneficial When Using Assumed Response Shapes

Finally, we tested the effects of regression (R′) and censoring (FD > 0.9) when modeling the 

data with an assumed hemodynamic response function. The average t-score without 

censoring (of the top 50 ROIs from the uncensored data) was 6.16. Regression did not 

significantly improve t-scores (Δt = −0.09, P = 0.83) and censoring significantly raised t-

scores (Δt = 0.64, P = 3.4E – 7).

Similar Effects are Seen With in Additional Data Sets

Procedures similar to those just described were applied to a separate study conducted in an 

adolescent cohort with Tourette syndrome. In this cohort, cue and target were modeled 

separately (complex trials) using some cueonly partial trials [Ollinger et al., 2001].

Figure 7 shows statistical maps and mean map ROI z-scores for uncensored and censored 

data for ANOVAs operating on all correct cue and target conditions using the censoring 

settings of FD > 0.9 mm (f0, b0). z-Scores for mean map ROIs consistently increase in both 

cases with censoring (Cue: Δz = 0.81, t[47] = 7.09, P = 6.1E – 9. Target: Δz = 0.70, t[48] = 

8.45, P = 4.7E – 11). This suggests that motion censoring did not interfere adversely with 

complex trial modeling.

An additional study conducted in healthy adults was examined to compare censoring and 

regression in a different population. These subjects moved much less than the other cohorts 

(Table I), enabling stricter censoring settings. Settings of FD > 0.5 mm, f0, and f0 were used 

to censor this data, removing 2% of the data. To see whether regression alone might be just 

as good as censoring in this low-movement population, we calculated a GLM using R′ as a 

coregressor of no interest. To compare between options, we used z-scores from top 50 

uncensored ROIs. As shown in Figure 8, even this small change caused uncensored ROI z-

scores for all correct trials to significantly increase (Δz = 0.15, t[49] = 6.03, P = 1.7E-8). 

Including regressors of no interest in the uncensored GLM produced a decrease in z-scores 

(Δz = −0.20, t[49] = −6.73, P = 2.1E – 7).
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Discussion

This report compares two methods to counter effects of motion in task fMRI data: (1) 

motion censoring and (2) motion regression. We first explored the effects of motion 

censoring on a healthy pediatric data set with relatively high-movement estimates. As 

measured by variance in time course estimates across subjects, GLM residuals, and the 

statistical significance of activation, censoring improves modeling of the BOLD signal in 

nearly every region examined (and decreased activation in frontal pole regions known to 

exhibit artifactual motion-induced activity). We compared a range of parameters for motion 

regression and motion censoring and found that motion censoring produces sizeable 

increases in z-scores across most choices of parameters (the exception, predictably, is that z-

scores decrease when too much data have been removed from a data set). Next, we 

compared z-scores from standard processing (realignment only) to those found after motion 

regression or motion censoring. Results indicated that motion censoring performs 

significantly better than a variety of motion regressions. Similar advantages for censoring 

over regression were observed when data were modeled with an assumed hemodynamic 

response shape. We then examined the impact of motion censoring in two additional data 

sets: a pediatric Tourette cohort and a healthy adult cohort (Table I). The Tourette syndrome 

group showed improvements similar to those of the healthy children. The healthy adults 

showed smaller, but still significant, increases in statistical significance of task-evoked 

activation and no improvement with motion regression.

These data range in age, clinical status, amount of motion, study design, and task. They are, 

however, all from the same site, acquired on the same scanner, and use similar pulse 

sequences. It is possible that our findings may not generalize beyond these populations (e.g., 

to the elderly) or acquisition parameters (e.g., other flip angles), and that faster TRs and 

other advances in methodology will diminish the utility of the types of corrections used in 

this report. However, given the growing number of reports on incomplete removal of 

motion-related artifact (using various scanners, pulse sequences, denoising strategies, etc.) 

[Bright and Murphy, 2013; Satterthwaite et al., 2013; Van Dijk et al., 2012], these findings 

are likely relevant for many groups and existing data sets. Our findings may also be less 

pronounced when analyses are performed using other strategies, such as using other 

assumed response shapes or when using group level analyses that take into account the error 

variance of lower-level estimates (e.g., FLAME in FSL).

A natural issue that arises is the extent to which data should be censored. We have no 

definitive solution to this important issue. Our experiences with RSFC indicate that any and 

all head motion produces artifactual changes in BOLD signal [Power et al., 2012], 

suggesting that optimal task fMRI results would be obtained with stringent motion censoring 

criteria that rigorously exclude volumes during which even modest movements occurred. As 

shown in Figure 1, a floor does exist for FD values (which rarely exceed 0.2 mm in still 

subjects), and stringent thresholds could be set just above this floor. Such a threshold could 

conceivably identify and remove almost all data contaminated with motion related effects. 

However, as the removal of noise by censoring entails a reduction in data available for 

analysis, the impact of censoring is entwined with study design and subject movement. As 

censoring settings are made more stringent, fewer trials remain, and the accuracy of GLM 
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estimation diminishes. Figure 6 shows this pattern quite clearly: z-scores improve as FD 

thresholds eliminate increasing amount of motion-contaminated data from thresholds of FD 

> 1.3 mm down to FD > 0.9 mm, but below FD > 0.9 mm improvements diminish until z-

scores frankly decrease at thresholds of FD > 0.3 mm. In cohorts with substantial motion, 

ideal levels of censoring are probably unobtainable. Nevertheless, even modest amounts of 

censoring can produce notable improvements in data quality.

Hence, we are unable to offer blanket prescriptions for censoring settings. We have 

demonstrated methods to select and test ROIs for improvements under a variety of motion 

censoring thresholds. Within our laboratory, we currently explore several FD thresholds, 

seeking the inflection point at which statistical improvements become overshadowed by the 

deleterious effects of losing data (e.g., between FD < 0.9 and FD < 0.7 for Cohort 1, Fig. 6). 

The position of this inflection point varies by cohort and is dependent on study design, 

subject motion, and so forth, leaving us unable to make universal recommendations.

A related issue is that in data sets limited by data quantity (e.g., numbers of events within a 

particular condition), gentler motion correction tools might be preferable to censoring 

techniques. This concern is certainly reasonable, but even in the most limited condition 

considered in this article (the Single Condition of Fig. 5 had ∼25 events per subject), 

removal of 11% of the data produced considerable improvement in the reliability of 

estimates.

In general, motion censoring appears to improve data quality more than many motion 

regression approaches. Only regression of derivatives of realignment estimates and the 24-

parameter expansion produced improvements in data quality, and these improvements were 

significantly less than those produced by almost any version of censoring. It is possible that 

voxel-specific regressors or regressors built using more elaborate methods may perform 

better than the brain-wide regressors used here (though, see Satterthwaite et al., 2013). 

Previous studies have found benefit to regression [Morgan et al., 2007; Oakes et al., 2005], 

and we are unable to account for their relative lack of benefit in this study other than to note 

that there are, of course, many differences in acquisition parameters, data processing, tools, 

and so forth, between such studies and this study. For example, we perform a single atlas 

transformation step in preprocessing and then compute a GLM with regressors on data in 

atlas space, whereas other studies compute a GLM with regressors in native space and then 

transform to atlas space. It is difficult to say if this would significantly alter the effect of 

motion regressors.

However, though motion regression can be beneficial [Morgan et al., 2007; Oakes et al., 

2005], there are also drawbacks to regression. If motion is correlated with behavioral 

condition in the data, motion regressors can cause task-related activity to be modeled as an 

effect of motion, resulting in underestimation of the effect of task [Bullmore et al., 1999]. 

This concern is particularly pertinent in block design experiments in which motion often 

does correlate with condition [Johnstone et al, 2006] (though, see Birn et al., 2004 for a 

discussion of optimizing study design in the presence of motion). As motion censoring 

avoids such problems and produces substantial improvements in data quality, we see little 

reason to regress rather than censor fMRI data.
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Investigators planning to use censoring techniques may wish to alter study design in several 

ways. In populations that tend to move, investigators may overpower study design to 

accommodate the loss of some data. Modest censoring in our pediatric and adolescent 

cohorts removed 15–20% of the data, and caused a small number of subjects to be excluded 

from analysis because sufficient trials no longer remained in particular conditions. Simpler 

designs with increased numbers of trials will best tolerate strict censoring settings. Another 

modification of study design that may further improve data quality would be the use of 

optical recording techniques to measure subject motion [Dold et al., 2006]. Current motion 

estimates are derived from MRI acquisitions spaced by 2–3 s, and movements occurring 

under the Nyquist limit could still impact data quality but pass undetected. Optical motion 

measurements have finer temporal and spatial resolution and should be capable of forming 

very precise temporal masks.

Conclusions

This article presents a simple way to reduce the effects of subject motion in task fMRI data. 

This method reduces between-subject variance in parameter estimates, reduces the error 

term in GLM calculations, and boosts statistical power in several data sets. The method is ad 

hoc but effective and can already be implemented in a variety of analysis platforms such as 

AFNI. In populations that tend to move, such as pediatric or clinical populations, motion 

censoring can substantially increase the quality, sensitivity, and accuracy of fMRI studies.
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Figure 1. 
Identification of high-motion volumes of BOLD data. Data from two subjects are presented 

to illustrate the methodology used in this manuscript. Two runs of BOLD data from each 

subject are used (2 × 125 frames), and a volume-to-volume index of head motion (FD) is 

plotted by summing at each frame the absolute values of the derivatives of the head 

realignment parameters used to realign the BOLD data. The subject at left moves very little, 

whereas the subject at right moves substantially at several points. A dotted line indicates a 

FD of 0.90 mm, the main threshold used in this manuscript. Volumes whose FD exceeded 

this threshold are shown below with vertical gray bars, forming a temporal mask that can be 

applied during GLM calculations to ignore volumes likely to contain artifactual BOLD 

signal changes caused by subject motion.

Siegel et al. Page 19

Hum Brain Mapp. Author manuscript; available in PMC 2014 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
An overview of how typical motion censoring settings impact Cohort 1. At left, a plot of 

data collected/censored from a single individual. The horizontal black bars represent the 

number of events collected for each condition. Within this, fine black bars show the number 

of data points used to model each condition at each time point (1–7) and gray bars are the 

number of data points removed by motion censoring. A two-factor ANOVA on the cohort 

reveals no effect of time point or condition on volumes removed. Middle, for the entire 

cohort, the average percentage of events remaining in each condition after censoring. At 

right, a histogram showing the distribution of sizes (in contiguous volumes) of the portions 

of data masked out by the standard temporal mask (FD > 0.9 mm) used in this article. Many 

motion epochs are only last a single TR, but many are also considerably longer.
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Figure 3. 
The variance of parameter estimates across subjects typically decreases as a result of motion 

censoring. Uncensored (dotted line) and censored (solid line) time courses are shown for 

mean map ROIs identified by ANOVAs as significantly active in all conditions (left side) 

and a single condition (right side) (the same analyses shown in Figs. 4 and 5). 

Representative ROIs whose change in z-score is within one standard deviation of mean z-

score change are used (the red points from the middle of the scatter plots in Fig. 5). To the 

right of each time course is a plot of standard error for each time point estimate. The bottom 

row shows mean differences (censored–uncensored) at each time point for the top 50 

positive time courses and the mean change in SEMs. The magnitude of time course 

estimates changed little with censoring, but the variance of time course estimates across 

subjects typically decreased with censoring, providing a general mechanism for the 

increased z-scores seen in Figure 5.
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Figure 4. 
Motion censoring reduces the signal assigned to error terms in GLMs. Fifty uncensored 

ROIs were defined across all correct trials. These ROIs were modeled as 10-mm diameter 

spheres and applied to censored and uncensored GLMs. The RMS residual value at each 

ROI in each subject was calculated across all time points. Each black dot on this plot 

compares the RMS residual of an ROI before and after the temporal mask is applied. 

Residuals almost always decrease upon application of the temporal mask, indicating that the 

GLM was better able to model the variance in the data when high-motion volumes were 

excluded. Such decreases were not seen with random censoring.
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Figure 5. 
z-Scores increase as a result of motion censoring in a variety of comparisons. Statistical 

maps from ANOVAs operating on all correct conditions (a main effect of time), a single 

condition (main effect of time), and a within-subject comparison of error versus correct 

trials are shown for uncensored and censored data. At left, the statistical maps with scale 

bars. At right, z-scores for mean map ROIs before and after censoring. Regions are “mean 

map” ROIs. All points above the black line in each scatter plot (x = y) demonstrate increased 

z-scores as a result of censoring. Time courses from representative ROIs (red points in the 

scatter plot) are shown in Figure 3.
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Figure 6. 
Motion censoring outperforms regressions over a wide parameter space. For all 

comparisons, the same set of uncensored main effect of time ROIs is used. At left, the 

changes in z-scores produced by various threshold criteria (removing 9, 12, 16, 23, and 35% 

of the data, respectively). All thresholds increase z-scores, and the greatest increases are 

seen for FD > 0.9 mm. At center, temporal mask augmentations are compared. FD > 0.9 mm 

is the base comparator, and thresholds are relaxed to allow forward and backward 

augmentations that remove similar amounts of data. All approaches are effective, but none 

surpass the FD > 0.9 mm results. At right, various regressors of no interest were included in 

GLM design (without censoring). FD denotes framewise displacement, R denotes detrended 

realignment estimates, and V denotes realignment estimates. The derivatives of detrended 

realignment estimates and the 24-parameter expansion of realignment estimates improve z-

scores, but to a lesser extent than most censoring approaches. To the right, combined 

application of the best censoring threshold (FD > 0.9) and the best regression (R′) results 

improves z-scores, but to a lesser extent than censoring alone. Far right, GLMs were 

generated using a double gamma assumed response function and the same set of uncensored 

main effect of time ROIs were used to compare the best regression (R′), and the best 

censoring threshold (FD > 0.9). Error bars represent standard error of the mean change in z-

scores between a given condition and the baseline “uncensored” condition.
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Figure 7. 
Motion censoring improves z-scores in a clinical data set. Statistical images and mean map 

ROI z-scores are shown from ANOVA main effect of time in cue conditions and ANOVA 

main effect of time in target conditions before and after censoring in Cohort 2.

Siegel et al. Page 25

Hum Brain Mapp. Author manuscript; available in PMC 2014 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. 
Motion censoring produces modest improvements in adults who move little. Statistical 

images and mean map ROI z-scores are shown for an ANOVA main effect of time across all 

correct conditions before and after censoring in Cohort 3.
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